Basic laboratory techniques

1. Working with glass and automatic pipettes

a) Weigh an empty glass beaker and write down its mass (m_{0}) to the table below.
b) Using the $500 \mu \mathrm{l}$ automatic pipette, measure out 5 ml of distilled water into the beaker and weigh it again ($m_{5 \mathrm{ml}}$).
c) Subtract the weights $\left(m_{5 \mathrm{ml}}-m_{0}\right)$ and write the difference $\left(x_{\mathrm{i}=1}\right)$ to the table.
d) Empty the beaker and repeat the procedure four more times.

Write all the results to the following table:

i	m_{0}	$m_{5 \mathrm{ml}}$	$x_{i}=m_{5 \mathrm{ml}}-m_{0}$	\bar{x}	$\Delta=\left(x_{i}-\bar{x}\right)$	Δ^{2}
1						
2						
3						
4						
5						

n \qquad number of measurements

$$
\bar{x}=\frac{\sum x_{i}}{n}
$$

\qquad arithmetic mean $s=\sqrt{\frac{\sum \Delta^{2}}{n-1}} \ldots$. standard deviation
e) Repeat the whole procedure using a 1 ml glass pipette. Write the results again to the table:

i	m_{0}	$m_{5 \mathrm{ml}}$	$x_{i}=m_{5 \mathrm{ml}}-m_{0}$	\bar{x}	$\Delta=\left(x_{i}-\bar{x}\right)$	Δ^{2}
1						
2						
3						
4						
5						

Task: Calculate the arithmetic mean and the standard deviation of your weight measurement.

