Organic compounds containing oxygen

Matej Kohutiar

Organic compounds containing oxygen

- Alcohols and phenols
- Carbonyl compounds
- Carboxylic acids and derivatives
- Ethers

Electron configuration of oxygen

$1 \mathrm{~s}^{2}$

$2 \mathrm{~s}^{2}$

$2 p^{4}$

In organic molecule oxygen is attached covalently

$$
\begin{aligned}
& -\underline{o}-1 \\
& =\bar{o}
\end{aligned}
$$

Electronic effects in molecules Inductive effect

$$
\mathrm{H}_{3} \mathrm{C}^{\delta}{ }^{\delta+} \rightarrow \mathrm{CH}_{2}{ }^{\delta+} \rightarrow \mathrm{Cl}^{\delta-}
$$

Hydroxy derivatives

- Alcohols $\left(\mathrm{C}_{\mathrm{sp} 3}-\mathrm{OH}\right)$
- Phenols $\left(\mathrm{C}_{\mathrm{ar}}-\mathrm{OH}\right)$
- Ethers (R-O-R)

Alcohols

$$
-\mathrm{C}^{\delta+} \rightarrow \mathrm{O}^{\delta-} \leftarrow \mathrm{H}^{\delta+}
$$

Alcohols

- In 1° alcohol, only one carbon atom is attached to the carbon carrying the -OH group (primary carbon)
- In 2° alcohol two carbon atoms are attached to the carbon carrying the - OH group (secondary carbon)
- In 3° alcohol three other carbon atoms are attached to the carbon atom carrying the - OH group (tertiary carbon)

Alcohols

The number of hydroxyl groups, there are:

- Monohydroxyderivatives
- Polyhydroxy alcohols

Diols (dihydroxyderivatives,)
Triols (trihydroxyderivatives)
Tetrols (tetrahydroxyderivatives)

- Phenols - OH attached primary to aromatic ring

Acidity and alkalinity

Acidity and alkalinity

acidity
alkalinity

Nucleophilic substitution

Nucleophilic substitution

Elimination

$\xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}}$

Oxidation of alcohols

Biological effects of alcohols

- Drugs often contain OH group
- Increase of polarity and solubility in water
- Hypnotic activity decreases from tertiary to primary alcohol
- Natural structures - steroids, hormones etc.
- Methanol
- Ethanol
- Glycerol

PHENOLS

Phenols

Reactions of phenols

Reactions of phenols

Biological effects of phenols

- Reactive group of acidic properties
- Phenol
- Resorcine
- Salicylic acid
- Acetylsalicylic acid

CARBONYL COMPOUNDS

muscone

vanilin

cinnamaldehyde

Reactivity

Nucleophilic addition

Nucleophilic addition

Nucleophilic addition

Aldol condensation

Aldol condensation

Biological effects of carbonyl containing molecules

- Very reactive group
- Formaldehyde
- Benzaldehyde
- Acetone
- Steroid hormones

aminophenazon

CARBOXYLIC ACIDS

Carboxylic acids

Nucleophilic substitution esterification

Carboxylic Acid Derivatives

Functional derivatives

Substitutional derivatives

Examples of Polyfunctional Carboxylic Acids

Dicarboxylic acids

$\mathrm{HOOC}-\mathrm{COOH}$ - oxalic acid
$\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$ - succinic acid (citric cycle)

citric acid

lactic acid

malic acid

$\mathrm{HCCO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$ - glutaric acid
-OH group containing acids

Ketoacids

Unsaturated acids

Maleic acid and fumaric acid are geometric isomers

α-ketoglutaric acid

Errata

By mistake I wrote wrong formula for resorcinol. Please, find right formula for this structure below:

pyrocatechol

resorcinol
$B R$,
M.K.

