SEPSIS

doc. M.D. Miroslav Durila Ph.D.

Department of Anaesthesiology and Intensive Care Medicine,

2nd Medical Faculty, Charles University in Prague

SEPSIS, septicemia

- 1. Local infection- localised to the place of entry
- 2. Bacteriemia- invasion to the blood
- 3. Sepsis Organ dysfunction

Sepsis is life-threatening organ dysfunction due to a dysregulated host response to infection, mortality 10%

Septic shock is a subset of sepsis in which underlying circulatory and cellular/metabolic abnormalities are profound enough to substantially increase mortality to ≥ 40%

Sepsis definition

 Sepsis: organ dysfunction is defined as an increase ≥ 2 points in the Sequential Organ Failure Assessment (SOFA) score

 Septic shock: is characterised by hypotension not reacting to volume - requiring vasopressors to maintain MAP over 65 mm Hg, and Lactate over 2 mmol/L, mortality 40%

Table 1. The Sequential Organ Failure Assessment (SOFA) Score*

	SOFA Score				
Variables	0	1	2	3	4
Respiratory Pao ₂ /Fio ₂ , mm Hg	>400	≤400	≤300	≤200†	≤100†
Coagulation Platelets ×10³/µL‡	>150	≤150	≤100	≤50	≤20
Liver Bilirubin, mg/dL‡	<1.2	1.2-1.9	2.0-5.9	6.0-11.9	>12.0
Cardiovascular Hypotension	No hypotension	Mean arterial pressure <70 mm Hg	Dop ≤5 or dob (any dose)§	Dop >5, epi ≤0.1, or norepi ≤0.1§	Dop >15, epi >0.1, or norepi >0.1§
Central nervous system Glasgow Coma Score Scale	15	13-14	10-12	6-9	<6
Renal Creatinine, mg/dL or urine output, mL/d	<1.2	1.2-1.9	2.0-3.4	3.5-4.9 or <500	>5.0 or <200

^{*}Norepi indicates norepinephrine; Dob, dobutamine; Dop, dopamine; Epi, epinephrine; and Flo₂, fraction of inspired oxygen.

http://clincalc.com/icumortality/sofa.aspx

qSOFA ("HAT"); 2 or more of:

Hypotension: SBP ≤100 mmHg

Altered mental status GCS < 15

Tachypnea: RR ≥ 22

[†]Values are with respiratory support.

[‡]To convert bilirubin from mg/dL to µmol/L, multiply by 17.1.

[§]Adrenergic agents administered for at least 1 hour (doses given are in µg/kg per minute).

^{||}To convert creatinine from mg/dL to μmol/L, multiply by 88.4.

Old sepsis definition

- SIRS to infection
- But not all patients with organ dysfunction have fulfilled SIRS criteria
- New definition is important for ER stratification of the patients

TT 38.6, leu 25000, CRP 120, HR 100, fully conscious - standard unit

TT 37.1, leu 12000, HR 88, somnolent, creat 350 - ICU

Treatment

Treatment of infection

- ATB
- Surgical treatment
- Symptomatic treatment:
 - Oxygen delivery-fluids, catecholamines, corticosteroids

Corticosteroids

- Not recommended to treat adult septic shock if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability
- If this is not achievable, use of hydrocortisone 200 mg/day, continuous flow
- Meningococcal meningitis dexamethasone 0,15 mg/kg á 6 hrs

Initial Resuscitation

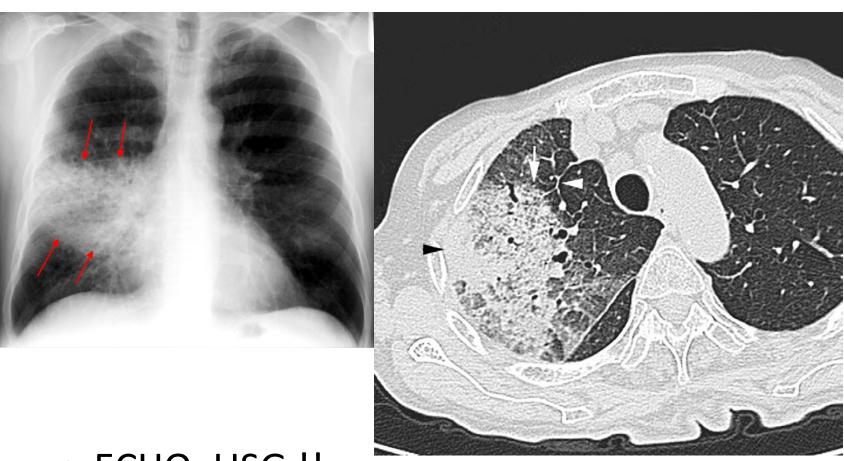
Goals during first 6 hrs

CVP 8 – 12 mmHg

MAP over 65 mmHg

Urine output over 0,5 ml/kg/h

Central venous (superior vena cava) or mixed venous oxygen saturation 70% or 65% respectively


Diagnosis

Blood cultures

At least 2 sets (aerobic and anaerobic),
Cultures from other sites
sputum, urine, CSF, drain content, wounds
Laboratory

Procalcitonine, CRP, leukocytes

Imaging studies

• ECHO, USG!!

SIRS

= systemic inflammatory response syndrome to any insult, adaptive process but can also lead to MODS and MOF

- Trauma
- Burns
- Pancreatitis
- Ischemia
- Hemorrhage
- Surgery
- Pulmonary embolism
- Anaphylaxis, Drug overdose...

SIRS

Production of cytokines and release into circulation with MODS and MOF

1.	Temperature	below 36 °C or above 38 °C
2.	Heart rate	over 90/min
3.	Breathing	RR over 20/min, PaCO2 < 4.3kPa
4.	WBC	< 4 000/mm3 or >12 000/ mm3
		or more than 10% of bands

SIRS can be diagnoses when 2 or more criteria present

Pathophysiology of SIRS/sepsis

Dysfunction of endothelium and mitochondrial dysfunction

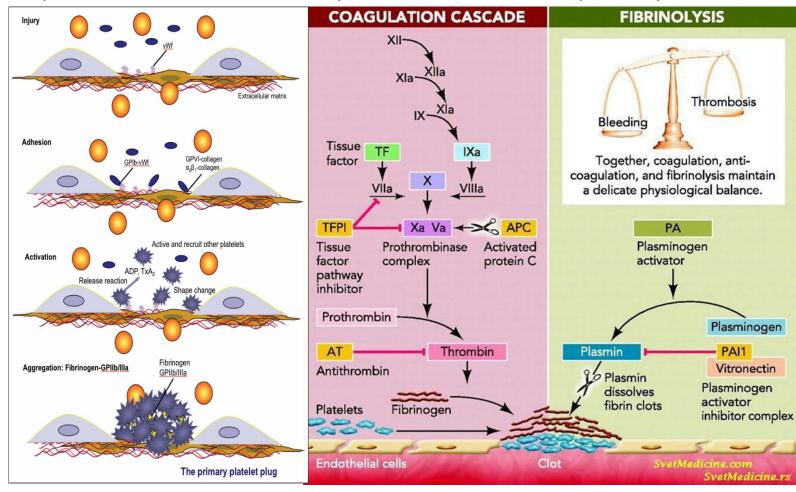
- capillary leak-no fluid responsevness

Inflammation is connected with coagulation abnormalities

- hypercoagulation,
- inhibited fibrinolysis
- Both lead to microvascular occlusion and ischemia and Impaired tissue oxygenation leading to MODS and MOF

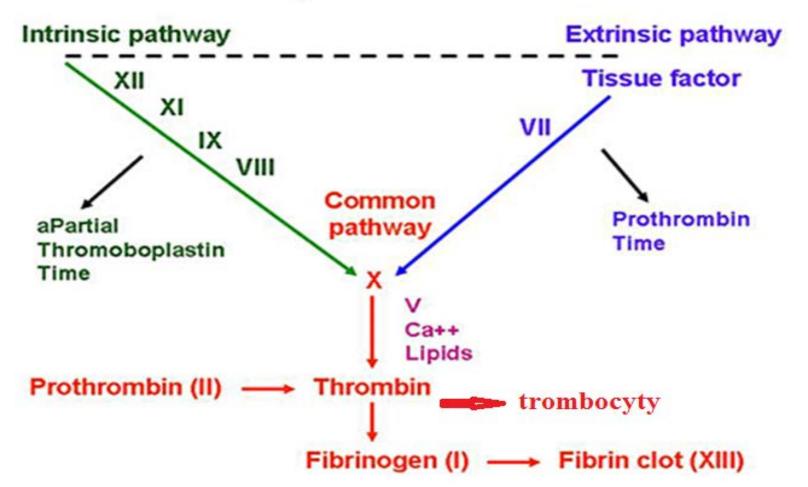
Treatment

- Causal and symptomatic
- The most critical period 2-3 days

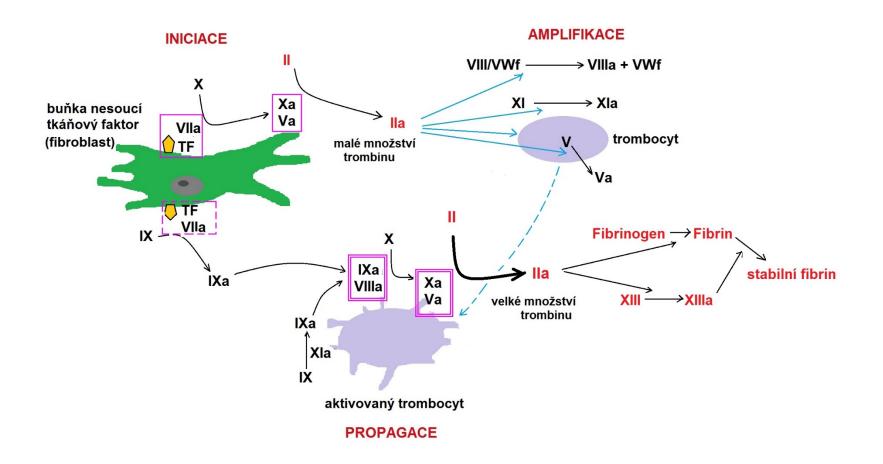

Hemostasis

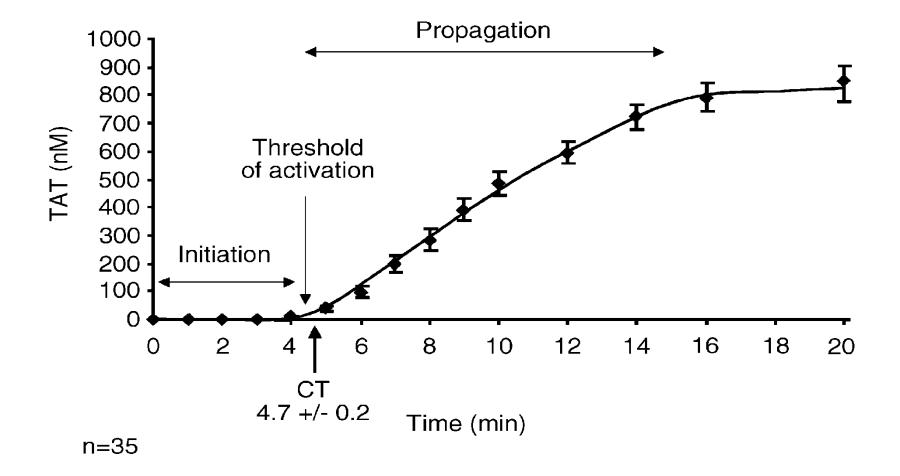
hemostasis

1. phase=Plt clot

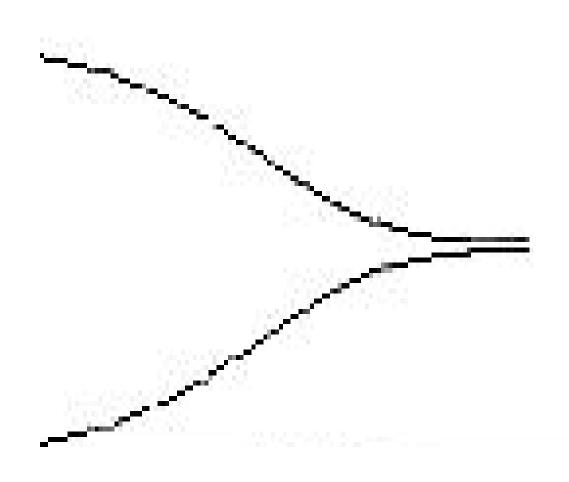

2. phase=fibrin clot

3. phase=lysis


Cascade-old model secondary coagulation


Coagulation Cascade

Cell-based-new model of secondary hemostasis


Cell-based-buněčný – nový model koagulace

K. G. MANN, K. BRUMMEL and S. BUTENAS, 2003, Journal of Thrombosis and Haemostasis

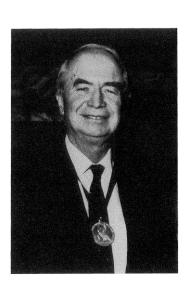
Fibrinolysis

Thromboelastometry /ROTEM/

CT - reaction time

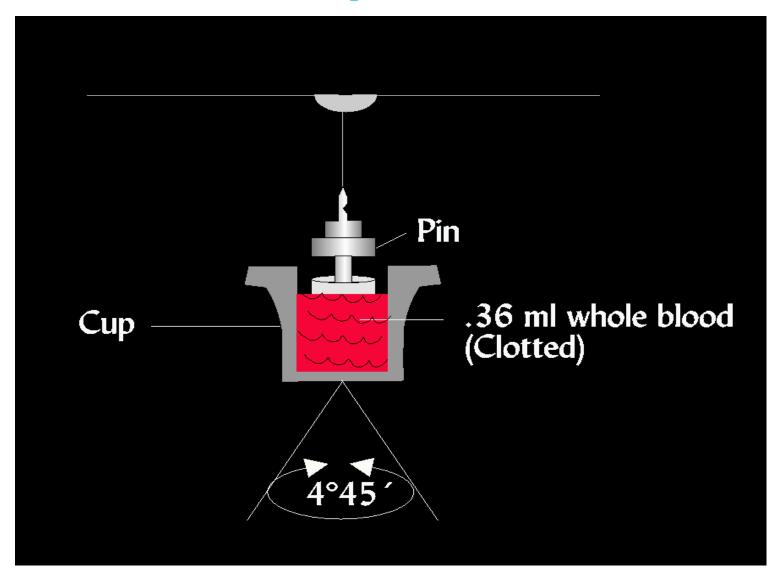
- CFT clot formation time
- MCF maximum clot firmness
- Li 30 a Ll 60 percentage of lysis

ROTEM


- evaluates viscoelastic properties of whole blood coagulation, all phases
 - "bed side"
- Limits: no detection of primary haemosthasis / better is PFA 100/

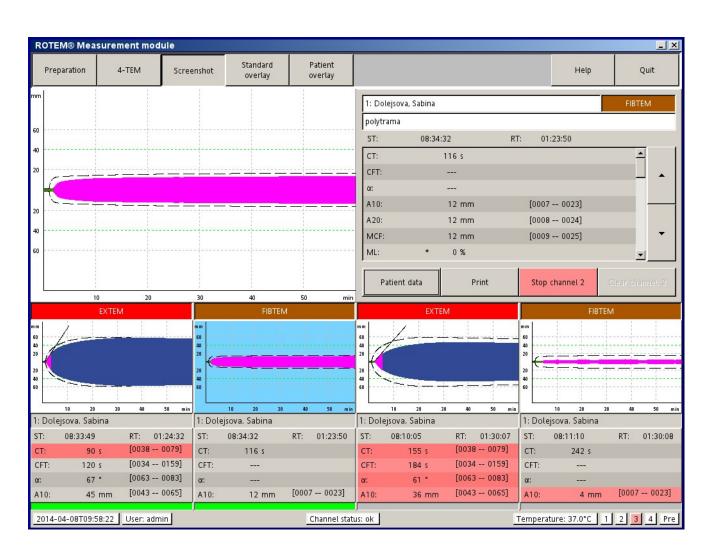
TEG/ROTEM

Prof. Helmut Hartert, Germany


TEG Haemoscope, Niles, IL, USA

RoTEM Pentapharm GmbH, Munich, Germany

Principle TEG


The European guideline on management of major bleeding and coagulopathy following trauma: 4th edition.

Rossaint R et al., Crit Care, 2016

Management of severe perioperative bleeding: Guid elines from the European Society of Anaesthesiology.

Kozek-Langenecker SA et al. Eur J Anaesthesiol. 2013

Fall from 8 floor, polytrauma, INR 2,9, APTT 60 s

Vyšetření rotační tromboelastometrie (ROTEM) při ŽOK

EXTEM-FIBTEM-APTEM

Th: Prothromplex

CT: 81s - 100s = 7,5j/kg (600j)

CT: 101-120s = 15j/kg (1200 j)

CT: >120s = 22,5 j/kg (1800 j)

Patol EXTEM a norma APTEM

Th: Tranexamová kyselina 20 mg/kg

EXTEM MCF < 50 mm a FIBTEM MCF < 10 mm

Th: Fibrinogen do MCF FIBTEM 10 mm

Dávka fibrinogenu=

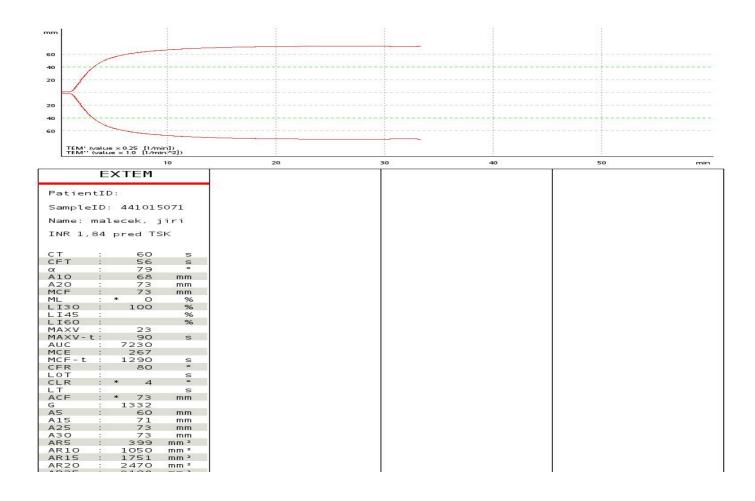
požadovaná MCF - aktuální MCF x 6,25mg/kg

 $(napr. 10 - 4 \times (6.25 \times 80 \text{ kg}) = 3000 \text{ mg}$

(cca na 1 mm přidáme 0,5 g fibrinogenu)

EXTEM MCF < 50 mma FIBTEM

MCF≥10mm) Th: trombocyty (s cilem trombocytů min.50tisic/µl).


EXTEM A10<30-35 mm:

Th: podat vše (Tranexamová kyselina, Fibrinogen, Trombocyty, Prothromplex).

Fibrinogen is essential

ROTEM vs PT/APTT

Consumption of FFP after ROTEM

POTLIV	
KUTEIV	

Period	FFP consumption (units)	Kč
3/2014 – 3/2015	2990	2 492 556 Kč
4/2013 – 4/2014	4028	3 357 866 Kč
4/2012 – 4/2013	6331	5 153 183 Kč
4/2011 – 4/2012	6138	4 926 769 Kč
4/2010 – 4/2011	7809	6 357 334 Kč
4/2009 – 4/2010	6097	4 924 800 Kč

Static blood tests-not whole blood

- APTT for monitoring of heparin
- PT for monitoring of warfarin [coumadin]
- TT
- Fibrinogen
- FDP (d dimer, etanolový test)
- Trombocyty
- AT III

Coagulation factor deficiency

- low production-hepatopathy, warfarin...
- High consumption- DIC, trauma, bleeding...

Disseminated intravascular coagulopathy

Increased unregulated intravascular production of thrombin resulting in formation of thrombus and occlusion of microcirculation accompanied by organ ischemia and bleeding due to consumption of factors such as plt, fibrinogen, AT, VII, IX

Variable	Overt DIC by ISTH	Overt DIC by KSTH
Platelet count	50,000–100,000/μL: 1 point	< 100,000/μL: 1 point
	$< 50,000/\mu L$: 2 points	
PT/aPTT	Prolongation of PT	Prolongation of PT
	3–6 sec: 1 point	> 3 sec: 1 point or
	> 6 sec: 2 points	prolongation of aPTT
		> 5 sec: 1 point
Fibrinogen	< 100 mg/dL: 1 point	< 150 mg/dL: 1 point
D-dimer	0.5–1 μg/mL: 1 point	Increase: 1 point
	1-2 μg/mL: 2 points	
	≥ 2 µg/mL: 3 points	
Total	Overt DIC ≥ 5 points	Overt DIC ≥ 3 points

http://reference.medscape.com/calculator/dic-score

Causes of DIC

- Sepsis
- Trauma
- tumors
- Obstetric complication-fluid embolisation
- Time course-minutes to days

Therapy

- If not bleeding stop initiation phase with antithrombin and heparin
- If bleeding stop bleeding by FFP, PCC, platelets, EBR-HCT 0,3, fibrinogen, and then again stop initiation by AT and heparin

Warfarin – urgent surgery

Prothromplex /II,VII, IX, X/

• FFP has INR 1.4-1,5

Thank you for your attention