APPROACH TO A TRAUMA

Dr. Jan Bureš

Polytrauma, multiple trauma

 A clinical syndrome with severe injuries involving two or more major organ or physiological systems which will initiate an amplified metabolic and physiological response

Mechanism of injury

Blunt trauma

Penetrating trauma

What is Chest Trauma?

Classified as either: Blunt or Penetrating Trauma

Trauma

- Epidemiology
 - Leading cause of death in the first 4 decades
 - 150,000 deaths annually in the US
 - Permanent disability 3 times the mortality rate
 - Trauma related dollar costs exceed \$400 billion annually

Blunt trauma

Blunt Trauma

- Injuries caused by rapid change in velocity
- Deceleration or high energy injuries
- Body stops, tissues and organs continue to move forward

- traffic accidents, occupational accidents, violence, sports, domestic accidents

Blunt trauma

- Multiple fractures
- Large tissue damage
- Contussion, laceration
- Hollow viscous organ ruptures

Approach – (initial resustitation, thorough diagnostic, damage control surgery

Penetrating trauma

Penetrating Trauma

- Object penetrates internal tissues causing injury
- Can be misleading: small surface,
- Injuries depend on depth, angle, device, location
- Stabbings, firearms

Mechanisms of Injury

Penetrating Trauma

- Small area
- Bleeding

Approach - surgery

Patophysiology of multiple trauma

6 basic mechanisms involved in trauma affecting the whole body

- soft tissue injury
- internal organs inj.
- fractures
- ischemia/reperfusion
- coagulation disorders
- infections

Result in:

- Blood loss
- Tissue damage
- Inflammatory response

Patophysiology - complex

Blood loss

- Drop in circulating volume shock development
- Tissue hypoxia acidosis, endothel activation,
 SIRS development
- Loss of coag. Factors
- Heat loss

Result: coagulopahy – more blood loss

Patophysiology - complex

- Tissue damage
 - Release of free myoglobin
 - High potassium
 - Organ dysfunction
 - Oedema, compartment syn.
 - Coag. Activation
 - bleeding

Triad of Death

I.Coagulopathy2.Acidosis3.Hypothermia

Vicious circle rather than a triangle

Acute Traumatic Coagulopathy

Illustration of the pathophysiological changes in hemorrhagic shock. DIC, disseminated intravascular coagulopathy; NO, nitric oxide.

Angele et al. Critical Care 2008 12:218 doi:10.1186/cc6919

25% trauma pts have established coagulopathy (ATC) on presentation - 4 fold increase in mortality

Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma 2003;54:1127-30.

MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma 2003;55:39-44.

Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma-Registry on 8724 patients. Injury 2007;38:298-304.

Monday, 21 October 13

6 Actual Phases of Care...

Prehospital
Emergency Department
Operative Phase
Critical Care Phase
Intermediate Phase
Rehabilitation Phase

Pre Hospital Phase :-

- 1. Airway C spine
- 2. Immobilization
- 3. Control of bleeding
- 4. IV line
- 5. Immediate appropriate transfer

Emergency Department Care

Systematic

Approach

ATLS, TNCC

Advanced Trauma Life Support

– Trauma Nurse Core Course

 Primary, Secondary Survey along with resuscitation and management

ATLS Guidelines

- Systematic approach necessary to rapidly identify injuries and stabilize the patient
- This approach is divided into:
 - 1. Primary Survey
 - 2. Resuscitative Phase
 - 3. Secondary Survey
 - 4. Definitive Care Phase

Why ATLS?

- Trimodal death distribution
 - First peak instantly (brain, heart, large vessel injury)
 - Second peak minutes to hours
 - Third peak days to weeks (sepsis, MSOF)

Distribution of trauma death

MGURE 43-1. Trimodal distribution of trauma deaths.

Concepts of ATLS

- Treat the greatest threat to life first
- The lack of a definitive diagnosis should never impede the application of an indicated treatment
- A detailed history is not essential to begin the evaluation
- "ABCDE" approach

Initial Assessment and Management

An effective trauma system needs the teamwork

Trauma Team

TO SAVE LIVES Do You Have What it Takes

TRAUMA TEAM

| 0 ATLUS | AKARI MISAKI | 2009 |

Trauma team

- Team Leader
- Anaesthetist + Anaesthetic Assistants
 General Surgeon + Orthopaedic Surgeon
 Emergency Room Physician
- Two Nurses. (Three if no anaesthetic assistant)
- Radiographer
- Scribe (Nurse or doctor)

Primary Survey

- Patients are assessed and treatment priorities established based on their injuries, vital signs, and injury mechanisms
 ABCDEs of trauma care
 - Airway and c-spine protection
 - B Breathing and ventilation
 - C Circulation with hemorrhage control
 - D Disability/Neurologic status
 - E Exposure/Environmental control

Primary Survey

ABCDE assessment, resusciation is initiated Adjuncts:
BP, pulse oximetry, ABG, EKG
Foley : urine output (avoided if suspected urethral injury)
NG: decompression, decrease aspiration
AP chest, AP pelvis, lateral C- spine
Evaluate response to resusciation

Airway

How do we evaluate the airway?

A- Airway

- Airway should be assessed for patency
 - Is the patient able to communicate verbally?
 - Inspect for any foreign bodies
 - Examine for stridor, hoarseness, gurgling, pooled secrecretions or blood
- Assume c-spine injury in patients with multisystem trauma
 - C-spine clearance is both clinical and radiographic
 - C-collar should remain in place until patient can cooperate with clinical exam

Airway Interventions

- Supplemental oxygen
- Suction
- Chin lift/jaw thrust
- Oral/nasal airways
- Definitive airways

- RSI for agitated patients with c-spine immobilization
- ETI for comatose patients (GCS<8)

Difficult Airway

Breathing

What can we look for clinically to assess a patient's 'breathing' status?

B-Breathing

- Airway patency alone does not ensure adequate ventilation
- Inspect, palpate, and auscultate
 - Deviated trachea, crepitus, flail chest, sucking chest wound, absence of breath sounds
- CXR to evaluate lung fields ????

Flail Chest

Subcutaneous Emphysema

Breathing Interventions

- Ventilate with 100% oxygen
- Needle decompression if tension pneumothorax suspected
- Chest tubes for pneumothorax / hemothorax
- Occlusive dressing to sucking chest wound
- If intubated, evaluate ETT position

- Casualty: man, car crash in 100km/h, arousable, complain of difficult breathing and chest pain
- Puls 130/min,
- BP 95/50
- **SpO2 85%**
- Diminished beathing sound right

OTI – P 150/min, BP 70/30 SpO2 66% Your action????

Chest Tube placement

C- Circulation

- Hemorrhagic shock should be assumed in any hypotensive trauma patient
- Rapid assessment of hemodynamic status
 - Level of consciousness
 - Skin color
 - Pulses in four extremities
 - Blood pressure and pulse pressure

Circulation Interventions

- Cardiac monitor
- Establish IV access
 - 2 large bore IVs
 - Central lines if indicated
- Treat hypovolemia!!
 - Crystalloids, colloids, blood
 - Draw blood samples: BC, Lcytes, coags, Type and X, ABG's, PG test, Tox. & ETOH levels

Resuscitation Process

Volume resuscitation

- Have blood ready if needed
- Level One infusers available -WARMING

urinary catheter

- On the scene FAST scans (USG)
- Cardiac tamponade decompression if indicated

(e) FAST Exam

- Focused Abdominal Scanning in Trauma
 4 views: Cardiac, RUQ, LUQ, suprapubic (+ chest cavities)
- Goal: evaluate for free fluid

FIGURE 2

See normal Liver and kidney

The view at left shows Morison's pouch, the space between the liver (L) and kidney (K). This image reveals a negative finding, while the image at right reveals a massive amount of free fluid (ff) in the peritoneal cavity, filing Morison's pouch and surrounding the liver (rs = rib shadow).

> Free fluid in Morrison's Pouch between liver and kidney

FIGURE 3 Perisplenic view

Perisplenic free fluid (ff) can be seen to the left of the spleen (S), or it can appear in the subdiaphragmatic space.

FIGURE 1 **Pericardial view**

Fluid in the pericardial sac is seen as a black stripe (f) that separates the visceral and parietal pericardial layers.

Morrison's pouch

D- Disability

- Abbreviated neurological exam
 - Level of consciousness
 - Pupil size and reactivity
 - Motor function
 - GCS
 - » Utilized to determine severity of injury
 - » Guide for urgency of head CT and ICP monitoring

EYE		VERBAL		MOTOR	
Spontaneous	4	Oriented	5	Obeys	6
Verbal	3	Confused	4	Localizes	5
Pain	2	Words	3	Flexion	4
None	1	Sounds	2	Decorticate	3
		None	1	Decerebrate	2
				None	1

Disability Interventions

- Spinal cord injury
 - High dose steroids if within 8 hours ????
- ICP monitor- Neurosurgical consultation
- Elevated ICP
 - Head of bed elevated
 - Mannitol
 - Hyperventilation
 - Emergent decompression

E- Exposure

- Complete disrobing of patient
- Logroll to inspect back
- Rectal temperature
- Warm blankets/external warming device to prevent hypothermia

Always Inspect the Back

Secondary Survey

AMPLE history

- Allergies, Medications, PastMedicaHistory, Last meal, Events
- Physical exam from head to toe, including rectal exam
- Frequent reassessment of vitals
- Diagnostic studies at this time simultaneously
 - X-rays, lab work, CT scan trauma protocol

Diagnostic Aids

- Standard trauma labs
 - BC, ions, U, crea, glu, myoglobin, TnI, EtOH, ABG, INR, APTT, fibri
- CT head to pelvis

Pt should only go to radiology if stable

http://www.trauma.org/archive/radiology/F ASTluq.html

Simple Pneumothorax

What does this indicate?

Bilateral Pubic Ramus Fractures and Sacroiliac Joint Disruption

What should this injury make you worry about?

Epidural Hematoma

Subdural Hematoma SDH

CT Scan in Trauma

- Abdominal CT scan visualizes solid organs and vessels well
- CT does NOT see hollow viscus, duodenum, diaphram, or omentum well
- Some recent surgery literature advocates whole body scans on all trauma

Disposition of Trauma Patients

- Dictated by <u>the patient's condition</u> and available resources i.e. trauma team available
 - OR, admit, or transfer
- Transfers should be coordinated efforts

 <u>Stabilization begun prior to transfer</u>
 Decompensation should be anticipated

Whats next

- According to the clinical and other data the patient will be taken to **OR**, **ICU/CCU**
- Trauma is almost always a *Surgical Event*
- Need to go in and mechanically repair
- Damage control surgery ???

"two hit " hypothesis

Initial trauma + surgical intervention: 2 hits

 Surgery in posttraumatic period may increase inflammation response

MODS development, MOF in 40%

 multiple trauma patients are more likely to die from their intra-operative metabolic failure that from a failure to complete operative repairs

Traditional approach

Damage control

- patients die from a triad of
- coagulopathy,
- hypothermia
- and metabolic acidosis.
- If so no control of haemorrhage

 For surviving the operation pacients must be transferred from ICU/CC to OR warmed, filled ..., Bc +coag. corrected

Damage Control Surgery

Monday, 21 October 13

Critical Care Phase

- Initial assessment:
 - Primary, Secondary survey methods
- Continue stabilization
- Complete cleaning (hair, wounds, etc.)
- Complication Prevention
 - » Infection, ARDS, DIC, embolisms, renal failure, compartment syndrome, MSOF, SIRS
- O2 Supply/ Demand balance
- Pain Management
- Communication: Patient and family

Summary

- Trauma is best managed by a team approach (there's no "I" in trauma)
- A thorough primary and secondary survey is key to identify life threatening injuries
- Once a life threatening injury is discovered, intervention should not be delayed
- Disposition is determined by the patient's condition as well as available resources.

Sources

- ATLS Student Course Manuel, 9th edition.
- www.med.unc.edu/emergmed/files/Trauma.ppt
 - http://faculty.ksu.edu.sa/19985/Lectures/Essam11.ppt
- Emergency Medicine A Comprehensive Study Guide, 5th edition.
- www.trauma.org/

Thank you

Abdominal Trauma

Common source of traumatic injury Mechanism is important – Bike accident over the handlebars – MVC with steering wheel trauma High suspicion with tachycardia, hypotension, and abdominal tenderness Can be asymptomatic early on FAST exam can be early screening tool

Abdominal Trauma

 Look for distension, tenderness, seatbelt marks, penetrating trauma, retroperitoneal ecchymosis

Be suspicious of free fluid without evidence of solid organ injury

Splenic Injury

Most commonly injured organ in blunt trauma
Often associated with other injuries
Left lower rib pain may be indicative
Often can be managed non-operatively

Blood from spleen Tracking around liver

Spleen with surrounding

Liver injury

Second most common solid organ injury
Can be difficult to manage surgically
Often associated with other abdominal injuries

Liver contusions

What's wrong with this picture?

Trace the Diaphragm Outline. Where is the Diaphragm on the left?

Abdominal contents Up in the chest on the left

- May only see the nasogastric tube appear to be coiled in the lung.
- Left > right due to liver protection of the diaphragm.

Hollow Viscous Injury

- Injury can involve stomach, bowel, or mesentery
- Symptoms are a result of a combination of blood loss and peritoneal contamination
- Small bowel and colon injuries result most often from penetrating trauma
- Deceleration injuries can result in bucket-handle tears of mesentery
- Free fluid without solid organ injury is a hollow viscus injury until proven otherwise

Mesenteric and bowel injury from blunt abdominal trauma. Notice the bowel and mesenteric disruption.