Respiratory failure

(Respiratory insuficiency)

MUDr Radim Kukla KAR FN Motol

Respiratory failure – definition

 Failure of ability to secure the metabolic needs of organism i.e. proper <u>oxygenation</u> and <u>excretion of CO2</u> Clinical signs of RF are **not always presen**, it is necassary the examination of **blood gases**

For diagnosis is necessary: to folow development of clinical signs and blood gas analysis

Sings and symptoms

- Dyspnea
- Tachypnea
- Hypoxemia

Result of non adequate gasses exchange are acid base disturbances.

Presence of acidosis is not main criterion for setting diagnosis, but acid base shift (movement) alows to define duration, cause and folowed treatment of RF.

We should evaluate : respiratory and metabolic part, level of compensation, if the disorder is acute or chronic Partial respiratory failure (hypoxemia) – Type 1
 PaO₂ < 55 – 60 torr
 PaCO₂< 40 torr
 PA-aO₂ increased (over 10 torr)

• <u>Global RF</u> (hypoxemia + hypercapnia) – Type 2 hypoxemia + retention of CO₂) $PaO_2 < 55 - 60$ torr $PaCO_2 > 45$ torr $PA-aO_2$ normal or increassed pH decreased

Acute /Astma bronchiale, /ARDS

- begin within minutes and days
- hypoxemia
- respiratory alkalosis or acidosis
- immediatly life threatening

Chronic /COPD/

- begin within days or months/years
- hypoxemia
- hypercapnia and metabolic compensation
- pulmonary hypertension
- potentionnaly life threatening

Based on this evaluation we have 3 types of resp. acidosis:

- Acute: resp. acidosis non compesated
- Acute mixed: (respiratory+metabolic) non compensated
- **Chronic:** respiratory acidosis partialy or fully compensated

From clinical view:

- Partial (hypoxemic RF, hypoxemia) Type 1
- Global (hypoxemia + hyperkapnia) Type 2

Etiology of RF

Lung pathology **Obstructive diseases** Upper airways (Laryngitis, Epiglotitis) Lower airways (Astma bronchiale, COPD,) Restrictive diseases (ARDS, Pneumonia, Cystic fibrosis, Emphysema) Trauma of lung (contusion, PNO, Hemo, Fluido) Outside lung pathology Cardiac dysfunction (Pulm.edema: Arrhytmia, Congestive heart failure, Valve pathology) Neurological disease (Cerebrovascular Accident, CNS, stem, perif.nn.) muscles or chest diseases wall Intoxic. with drugs (Mo, diazepins) that supress resp.

Arterial hypoxemia

Definition: decreased partial preassure of oxygen in blood less than 60mmHg /8,0kPa or causing Hb O2 saturation of less than 90%

Causes

- a) low concentration in inspired gas (FiO₂)
- b) alveolar hypoventilation
- c) impaired oxygen diffusion
- d) ventilation perfussion inequality
- e) shunt
- f) desaturation of mixed venous blood

Hypoxemie – etiology

atelectasis

diffuse lung infitrations

oedema

ARDS

unilateral lung diseases

Shunt (Qs/Qt) =

% of venous blood with no contant with fully healty alveolo-capillary membrane

Normal values 3 – 5 %

Need of mechanical ventilation - about 30%

Hypoxemic index PaO₂ / FiO₂

normal values above 400 need of MV below 200

shows, how is the function of lung impaired regardless of etiology of lung desease

Therapy

T1 respiratory failure: oxygen therapy

<u>T2 respiratory failure:</u> (oxygen therapy and also need of elimination of CO2) = mechanical ventilation

Oxygen therapy goals:

- Concentration of oxygen
 flow v. rebreathing
 (n. canula, f. mask, rebreathin mask, CPAP mask)
- Warm
- Wet nebulisation

 (humidification in mechanical ventilation also use for drug administration: broncholytics, mucolytics

Toxicity of oxygen

- Emergency situations no problem
- Chronic aplications: over hours (14 hours?)
 danger concentr. > 50% retrolental fibroplasia brochopulmonal dysplasia lungs fibrosis

Mechanical ventilation

CMV – control /countinous/ mechanical ventilation

IPPV - intermitent positive pressure ventilation

Total ventilatory support
 Partial ventilatory support

CMV

- Volume control ventilation VCV
- Pressure control ventilation PCV

- Intermitent mandatory ventilation IMV
- Synchr. interm. mand. ventilation sIMV PsIMV VsIMV

Objectives

 ® Understand how ventilators control breath delivery - phase, type and control variables.
 ® Understand the basic adjuncts and modes of ventilation.

Phase Variables

® Trigger (start)- begins inspiratory flow
 ® Cycling (end)- ends inspiratory flow
 ® Limiting (continue)- places a maximum value on a "control variable"

pressure

volume

flow

time

Breath Type... Only Two (for now)!

- <u>Mandatory</u>
 - Ventilator does the work
 - Ventilator controls start and stop
- ®Spontaneous
 - Patient takes on work
 - Patient controls start and stop

Control

®Delivery of a mandatory breath at a set time interval time is the trigger to start the breath

Volume Control Breath Types

Pressure Control Ventilation -PCV

®The ventilator delivers a set pressure limit over a set inspiratory time

Volume vs... Pressure Control Ventilation Volume Ventilation Pressure Ventilation

- ® Volume delivery constant
- Inspiratory pressure varies
- Inspiratory flow constant
- Inspiratory time determined by set flow and V_T

- Nolume delivery varies
- Inspiratory pressure constant
- Inspiratory flow varies
- Inspiratory time set by clinician

Assist, Assist Control

® Patient is able to trigger the start of inspiration

Synchronize Intermittent Mandatory Ventilation - SIMV

® A minimum mandatory breath rate is set with spontaneous breathing supported between the mandatory cycles

Pressure Support Ventilation -PSV

The ventilator delivers a set pressure limit with end inspiration driven by the patient

Safety Issue - PSV

® PSV is a spontaneous mode of ventilation, therefore the patient must demonstrate they can trigger the ventilator and that volumes are appropriate

[®] High and low rate, apnea, and high and low tidal volume alarms need to be assessed

Potential Complications of MV

 Ventilator malfunction
 Manually ventilate patient ® Barotrauma Alveolar rupture due to overdistention Monitor PIP, breath sounds Pulmonary Oxygen toxicity ® goal: FIO₂ \leq .50 and PaO₂ \geq 70 Cardiovascular compromise/arrhythmias R Monitor vital signs

Potential Complications of MV

Infection

- ET tube bypasses natural airway defense mechanisms
 - Nosocomial pneumonia, aspiration pneumonia
- Good handwashing, provide mouth and tube care

Psychological

- Patients may be extremely anxious and/or agitated
- Give consistent, calming explanations, offer reassurance
- Sedation, anti-anxiety agents frequently indicated

Basic Ventilator Parameters

FiO₂ Fractional concentration of inspired oxygen delivered expressed as a % (21-100) Breath Rate (f)

R

R

The number of times over a one minute period inspiration is initiated (bpm)

® Tidal volume (V_T)

The amount of gas that is delivered during inspiration expressed in mls or Liters. Inspired or exhaled.

[®] Flow

The velocity of gas flow or volume of gas per minute

PEEP

® Definition

- Positive end expiratory pressure
- Application of a constant, positive pressure such that at end exhalation, airway pressure does not return to a 0 baseline
- Ised with other mechanical ventilation modes such as A/C, SIMV, or PCV
- Referred to as CPAP when applied to spontaneous breaths

PEEP

- Increases functional residual capacity (FRC) and improves oxygenation
 - Recruits collapsed alveoli
 - Splints and distends patent alveoli
 - Redistributes lung fluid from alveoli to perivascular space

CPAP

® Definition

- Continuous positive airway pressure
- Application of constant positive pressure throughout the spontaneous ventilatory cycle
- No mechanical inspiratory assistance is provided
 - Requires active spontaneous respiratory drive
- ® Same physiologic effects as PEEP

- ® May decrease WOB
- ® Tidal volume and rate determined by patient

CPAP: continuous positive airway pressure

PEEP: positive end exspiratory presure

Most frequently used at present time:

PsIMV x CPAP/PS

Indications

 RF
 + other causes: circulatory failure brain oedema multiple trauma to decrease energetic comsuption

some notes:

RF

Impaired oxygenation Impaired ventilation

some notes :

- Ventilation?
- Respiration?
- Regulation of breathing ... brain stem...

pO₂ pCO₂ pH

- Compliance.....?
- Resistence

relationship.....Pressure v. Flow
(stenosis of upper airways)

Mechanical ventilation

- Intubation : orotracheal nasotracheal tracheostomy
 Bypas of airways to warm
 - to make wet
 - to make wet
 - elimination of secrets

medication

- Analgesics.....sufentanil
- Hypnotics.....midazolam
 propofol
- Muscle relaxants ?

Start versus end of MV

- Startquick
- End.....weaning.....sometimes takes time

ARF

RDS resp. distress sy
ARDS adult respiratory distress sy
ARDS acute respiratory distress sy
ALI acute lung injury

Definition of Acute Respiratory Dystress Syndrom

- Acute onset of respiratory dystress
- Hypoxemia
 - ALI: $PaO_2/FiO_2 \leq 300$
 - ARDS: PaO₂/FiO₂ ≤ 200
- Bilateral consolidation of chest radiograph
- Absence of clinical findings of cardiogenic pulmonary edema

• Clinical signs....RF...blood gases...quick onset

- Xray picture....wet lung(shock lung)
- Dif dg: cardiac failure pulmonary edema

etiology

- Direct damage of the lung
 - aspiration
 difuse infection
 inhalation of toxic gases
 lung contusion
- Indirect damage of the lung
 - sepsis, necrosis, inflamation
 multiple trauma without lung injury, burns
 shock, hypoperfusion
 acute pancreatitis
 cardiopulmonary bypass
 (mediators)

Treatment of ARDS

- Nothing special
- Monitoring and hemodynamic managament
- Treatment of infection + nutrition
- Avoiding iatrogenec complicatios:
- Support of other organ system functions
- Mechanical ventilation

Oxygen v. Inspiratory pressure of MV

Mechanical ventilation

• Lung protective strategy:

- Limit the size of VT 6ml/kg or end-insp.plateau airway pressure lower than 25cm H20
- Increase RR
- Level of PEEP
- Recruitment of the lung
- Permiseve hypercapnia
- Mode of ventilation pressure v. volum-control ventilation, mandatory v. spontaneuos, etc

MOD/MOF

Culmination of general excesiv imune, neuroendocrinne and inflammatory reaction of organism on inzult, leading to failure of individual organs :

- circulatory failure shock
- lung ALI, ARDS
- CNS encefalopathy
- GIT gastritis, colitis, pancreatitis
- coagulation DIC
- metabolism
- imunity
- kidney ARF/AKF
- liver liver dysfunction/failure